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A B S T R A C T

The aim of this work is to attempt a competition by IBM on an open
problem related to quantum simulation. This writeup is divided in
three chapters. In the first chapter we give a brief and quick overview
at the field of quantum computation. This it is not meant to be by
any means complete, and we remind to [Mic11] for further deepening.
However this first chapter should give to the reader all the tools in
order to be able to read this work.

In the second chapter we take a look at quantum simulation, what
it is, how it is done, and how it is done in practice. Again, this is not
mean to be complete at all, as we describe the only techniques that
will be used in the challenge.

We finish with the third chapter, where we introduce the actual
competition and the strategy we have adopted to solve it.
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1 F U N DA M E N TA L C O N C E P T S

Information is physical.

Rolf Landauer

The term quantum computer is synonymous with the quantum circuit
model of computation. This chapter provides an introduction to
the postulates of quantum computation and a general overlook of
quantum circuits and their basic elements.

1.1 the postulates

We shall start with a general overview of the basic postulates of quan-
tum mechanics. These postulates provide a connection between the
physical world and the mathematical formalism of quantum mechan-
ics upon quantum computation is built on.

Postulate 1. Associated to any isolated physical system is a Hilbert
space H known as the state space of the system. The system is com-
pletely described by its state vector |ψ(t)⟩, which is a unit vector in the
system’s state space.

Postulate 2. The time evolution of the state of a closed quantum
system is described by a unitary operator. That is, for any evolution of
the closed system there exists a unitary operator1 Û(t2, t1) such that
if the initial state of the system is |ψ(t1)⟩ then after the evolution the
state of the system will be:

|ψ(t2)⟩ = Û(t2, t1) |ψ(t1)⟩ with Û†Û = Î .

Postulate 3. Quantum measurements are described by a collection
{M̂m} of measurement operators. These are operators acting on the
state space of the system being measured. The index m refers to the
measurement outcomes that may occur in the experiment. If the state
of the quantum system is |ψ(t)⟩ immediately before the measurement
then the probability that result m occurs is given by

p(m) = ⟨ψ|M̂†
m M̂m|ψ⟩

1 Since Û(t2, t1) is a unitary operator, which is the generalization of the rotation
operator to complex spaces, we may describe the time evolution of state vectors as
rotations (not necessarily spatial) in Hilbert space.
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2 fundamental concepts

and the state of the system after the measurement is

M̂m |ψ⟩
⟨ψ|M̂†

m M̂m|ψ⟩
.

The measurement operators satisfy the completeness equation

∑
m

M̂†
m M̂m = Î

which express the fact that, if the states are normalized (and that will
be always required), probabilities sum to one:

∑
m

p(m) = ∑
m
⟨ψ|M̂†

m M̂m|ψ⟩ = ∑
m
⟨ψ|ψ⟩ = 1 . (1.1)

Postulate 4. The state space of a composite physical system is the
tensor product of the state spaces of the component physical systems.
If we have systems numbered 1 through N:

H =
N⊗

i=1

Hi and dimH =
N

∏
i=1

dimHi .

1.2 quantum bits

The definition of qubit (quantum bit) immediately follows from postu-
late 1:

Definition 1.1. A qubit is a physical system Q whose Hilbert space
HQ has dimension dimHQ = 2.

Because of postulate 1 and according to the definition of vector
space we see that every linear combination of a state vector

|ψ⟩ = a |α⟩+ b |β⟩ |α⟩ , |β⟩ ∈ Hψ a, b ∈ C |a|2 + |b|2 = 1 (1.2)

is still part of the state space and it still describes the physics of the
system. (There is only a constraint: the state has to be normalized
according to (1.1), such a rescaling is possible and will be assumed
hereafter.)

Here lies the main difference between bits and qubits: whereas in
classical computation only 0 and 1 states are allowed, in quantum
computation also superposition states are perfectly acceptable. WhatMain difference

between bits and
qubits.

does a superposition state physically mean? If we measure for example
(1.2) the probability of being in the state |α⟩ is |a|2 and the probability
of being in the state |β⟩ is |b|2.

According (again) to the first postulate the state of a qubit is a vector
in a two-dimensional Hilbert space. Let us define its basis:

Definition 1.2. The orthonormal basis of the two-dimensional Hilbert
space describing a qubit is called computational basis and it’s composed
of the states |0⟩ and |1⟩ known as computational basis states.



1.2 quantum bits 3

How a qubit is physically made? It can be a 1/2 spin particle, an
atomic system whose dynamics is described by two (non-degenerate)
energy levels and so on. Whatever we choose to be our physical
realization of the qubit we have a Hermitian operator associated
with the observable chosen. The computational basis then will be
composed by the eigenstates of the Hermitian operator associated
with the observable2, those state (whatever the operator is) will be
labelled as {|0⟩ , |1⟩} according to definition 2.

Let us use, for example, a 1/2 spin particle. We know that the
Hermitian operator associated with spin is Sz or σ̂z = 2

h̄ Sz that fits
our scope because it has two eigenstates and two non-degenerate
eigenvalues: An example of how a

qubit can be
physically
implemented.σ̂z |χ+⟩ = |χ+⟩

σ̂z |χ−⟩ = − |χ−⟩ .
(1.3)

These eigenstates (i.e. the spinors) span a two-dimensional Hilbert
space and can be chosen as the computational basis.

1.2.1 Quantum register

The definition of quantum register, quantum analogue of the classical
register, immediately follows from postulate 4:

Definition 1.3. A n size quantum register is a system QR with dimHQR =

2n.

In other words, a quantum register is a system comprising multiple
qubits.

The simplest case is a system N = 2 with two qubits Q1 and Q2.
If we define the basis of HQ1 and HQ2 as {|0⟩1 , |1⟩1} and {|0⟩2 , |1⟩2}
one possible basis of HQR is Quantum register

with two qubits.

{|0⟩1 ⊗ |0⟩2 , |1⟩1 ⊗ |0⟩2 , |0⟩1 ⊗ |1⟩2 , |1⟩1 ⊗ |1⟩2} (1.4)

and as expected we have dimHQR = 4.

1.2.2 Entanglement

Consider two arbitrary quantum systems Q1 and Q2, with respective
Hilbert spaces HQ1 and HQ2 . The Hilbert space of the composite
system is the tensor product:

HQ1 ⊗HQ2 ,

2 To every Hermitian operator Ω defined on a space H there exist (at least) a basis of
the space H consisting of the orthonormal eigenvectors of the operator [Sha11, p. 36].
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if the first system is in state |ψ⟩Q1
and the second in state |ψ⟩Q2

the
state of the composite system is

|ψ⟩Q1
⊗ |ψ⟩Q2

.

States of the composite system that can be represented in this form
are called separable states while

Definition 1.4. A composite system such that |QR⟩ ̸= ⊗i |Qi⟩ is an
entangled state.

If we consider two qubits:An example of a
separable state.

|Q1⟩ = a |0⟩1 + b |1⟩1 a, b ∈ C, |a|2 + |b|2 = 1

|Q2⟩ = c |0⟩2 + d |1⟩2 c, d ∈ C, |c|2 + |d|2 = 1

the overall state of the system is:

|QR⟩ = |Q1⟩ ⊗ |Q2⟩ = ac |0⟩1 ⊗ |0⟩2
+ bc |1⟩1 ⊗ |0⟩2 + ad |0⟩1 ⊗ |1⟩2 + bd |1⟩1 ⊗ |1⟩2

that is a separable state.
If instead we have:An example of an

entangled state.

|Φ+⟩ = |0⟩1 ⊗ |0⟩2 + |1⟩1 ⊗ |1⟩2√
2

we immediately see that this is an entangled state3 as there is no way
of writing it as |Q1⟩ ⊗ |Q2⟩.

1.3 quantum circuits

A quantum circuit is a set of elementary quantum operations, that is a
model for quantum computation in which a computation is a sequence
of quantum gates4.

The basic blocks of a quantum circuit are quantum channels, single-
qubit gates, two-qubit gates and the measurement operation which
allow us to retrieve the result of the algorithm implemented in the
circuit. We shall analyze each component in the following sections.

It follows from the second postulate that the dynamical evolution
of the qubit due to the various elements of the circuit (gates and
channels) is described by a unitary operator. Let us review some of its
proprieties:

Theorem 1.1. There always exist an operator Ĥ such that Û(t) = e−iĤt/h̄

with Ĥ = Ĥ† the Hamiltonian describing the system [Sha11, p. 145].

3 It is one of the Bell states, four specific maximally entangled quantum states of two
qubits.

4 The anaolgy with the classical gates is only conceptual, unlike classical computer data
is not sent into the gate but the gate is instead a operation applied to all the machine.
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Note that the the Hamiltonian being Hermitian guarantees the
unitarity of our operator. After the evolution the norm of the input
is conserved (which implies that the state is still valid according to
postulate 1) since

Theorem 1.2. A unitary operator preserves the inner product.

Proof.
⟨Û(t)ψ|Û(t)ψ⟩ = ⟨ψ|Û†(t)Û(t)|ψ⟩ = ⟨ψ|ψ⟩

Thanks to theorem 1 and postulate 2 we are able to understand the
dynamical evolution of the qubit (or the quantum register) due to each
gate (or channel) State evolution in the

circuit.

|Q⟩out ≡ Û(τ) |Q⟩in = e−iτĤQ/h̄ |Q⟩in (1.5)

where τ is the time which is physically necessary for the element of
the circuit to complete its action, HQ is the qubit (or quantum register)
Hamiltonian and |Q⟩in, |Q⟩out are the input and output.

Theorem 1.3. For every element of the circuit (gate or transmission channel)
acting as |Q⟩out = Û |Q⟩in there exist Û† such that |Q⟩in = Û† |Q⟩out.

Proof. It immediately follows from the unitary of the operator ÛÛ† =

Î→ Û−1 = Û†

In other words, every operation executed by the circuit is reversible
and operation with a different number of inputs and outputs (perfectly
acceptable in classical computation, an example in 1.1) are not possible.

Figure 1.1: Classical inverse gate.

1.3.1 Quantum channels

|Q⟩ |Q⟩

Figure 1.2: Ideal quantum channel

A quantum channel represents any process that realizes a point-to-
point transfer of the quantum information embodied into the state
of one qubit |Q⟩. We can picture a quantum channel as a pipeline
intended to carry quantum information5. We are going to describe

5 Time proceeds from left to right, wires represent qubits.
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memoryless quantum channels (i.e. the output of a channel at a
given time depends only upon the corresponding input and not any
previous ones). A quantum channel should not alter the information
but just transmit it, thus, from (1.5):

Definition 1.5. A quantum channel is an evolution operator with Ĥ = Î.

The evolution due to the quantum channel can be readily built:

|Q⟩out = Û(τch) |Q⟩in = e−iτchÎ |Q⟩in = e−iτch/h̄ |Q⟩in (1.6)

as a phase factor does not change the state of the qubit.6

Such condition can be obtained in two ways:

flying qubit When the object embodying the qubit can physically
move. Its repositioning should be shielded enough to avoid any
interaction that could result in Ĥ ̸= Î.

still qubit If the object embodying the qubit cannot move an auxil-
iary medium is necessary, with the interaction in the medium
properly designed so as to guarantee that condition (1.6) be
fulfilled.

1.3.2 Single-qubit gates

Quantum gates are not meant to only transport information like
quantum channels, their dynamical evolution is supposed to alter the
state. Single-qubit gates G1 perform an operation on one single qubit.
G1 represents the dynamical evolution of the qubit and can therefore
be realized by properly designing an Hamiltonian according to (1.5):

|Q⟩out = G1 |Q⟩in = e−iĤQτG1 /h̄ |Q⟩in .

|Q⟩in G1 |Q⟩out

Figure 1.3: One-qubit gate

Once a computational basis has been chosen we can indicate the
corresponding matrix representation for the basis vectors as the fol-
lowing

|0⟩ →
(

1
0

)
|1⟩ →

(
0
1

)
. (1.7)

Among the most important gates there are Pauli X gate and Pauli Z
gate, their matrix representation according to 1.7 is7

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]
.

6 |ψ⟩ = |ψ′⟩ = |ψ⟩ eiϕ since the probability of measuring a specific eigenvalue ω does
not change: p′(ω) = ⟨ψe−iϕ|Pω |ψeiϕ⟩ = ⟨ψ|Pω |ψ⟩ = p(ω) ∀ω .

7 Their matrix representation equals Pauli matrices, hence the name.
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The Pauli-X gate is the quantum equivalent of the NOT gate for classi-
cal computers. The Pauli-Z gate leaves the basis state |0⟩ unchanged
and maps |1⟩ to − |1⟩. Due to this nature, it is sometimes called
phase-flip.

Hadamard gate

Finally the Hadamard gate. The matrix representation is the following:

H =
1√
2

[
1 1
1 −1

]
(1.8)

Therefore from (1.7) we have the action of the gate on the basis states
(and using a linear combination of those the action on any qubit):

H |0⟩ = |0⟩+ |1⟩√
2

H |1⟩ = |0⟩ − |1⟩√
2

This gate is fundamental as it creates a superposition state (i.e. a
measurement will have equal probabilities to result in |1⟩ or |0⟩)
therefore is often the first step of quantum algorithms.

|Q⟩in H |Q⟩out

Figure 1.4: Hadamard gate

Let us take an example of a possible physical implementation. Sup-
pose the qubit being implemented by a 1/2 spin particle according
to (1.3). If the particle interact with a magnetic field B = Bn with Hadamard gate

realized trough a
spin particle
interacting in a
magnetic field.

n = ( 1√
2
, 0, 1√

2
) the Hamiltonian representing the interaction is

Ĥ = gµBB · Ŝ =
gBµB

2
n · σ̂ = hn · σ̂ with h ≡ gBµB

2

where Ŝ = (Ŝx, Ŝy, Ŝz) is the spin operator, σ̂ = (σ̂x, σ̂y, σ̂z) is the Pauli
vector, g is the g-factor and µB is the Bohr magneton.

We know that

Theorem 1.4.
eiσ̂·nθ = Î cos θ + iσ̂ · n sin θ

Proof.

eiσ̂·nθ =
∞

∑
m=0

(iθ)m

m!
(σ̂ · n)m =

= Î
∞

∑
m=0

(−1)m θ2m

(2m)!
+ iσ̂ · n

∞

∑
m=0

(−1)m θ2m+1

(2m + 1)!
=

= Î cos θ + iσ̂ · n sin θ
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thus we can write the evolution operator as

Û(τG1) = e−ihτG1 σ̂·n = Î cos(hτG1)−
i√
2
(σ̂x + σ̂z) sin(hτG1)

and its matrix representation is

U(τG1) =

(
cos(hτG1)− i√

2
sin(hτG1) − i√

2
sin(hτG1)

− i√
2

sin(hτG1) cos(hτG1) +
i√
2

sin(hτG1)

)

that we can compare with (1.8) (we are trying to build an Hadamard
gate) to obtain

τG1 =
π

2h
.

Only with this constraint we have a Hadamard gate, thereafter the time
that is physically necessary for the gate to complete its action is not just
a label, but must be regarded as a genuine physical time, depending
on fundamental constants and tunable Hamiltonian parameters.

1.3.3 Two-qubit gates

Two-qubit gates perform an operation on two qubits simultaneously,
they are represented by a unitary operator acting on HQR = HQ1 ⊗
HQ2 such that, according to (1.5),

|QR⟩out = G2 |QR⟩in = e−iĤQRτG2 /h̄ |QR⟩in

where as always τG2 is the time that the gate takes to accomplish its
task and HQR it is the quantum register Hamiltonian. Note that if
the dynamical evolution of the quantum register is of course unitary,
the evolution of the two qubits is not. We can readily verify that the
matrix representation of those operators is a 4x4 matrix as they act on
a four-dimensional Hilbert space.

|Q⟩1
G2

|Q⟩2

Figure 1.5: Two-qubit gate

Controlled gates

Suppose Û is an arbitrary single-qubit unitary operation. A controlled-
U operation is a two-qubit operation with a control and a target
qubit. If the control qubit is set then Û is applied to the target qubit,
otherwise the target qubit is left alone.
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|Q⟩c

|Q⟩t U

Figure 1.6: Controlled gate

Control-U gates that can convert a separable state to an entangled
one are called entangling gates. Let us take an example where we
consider the following quantum register

|QR⟩in =
1√
2
(|0⟩+ |1⟩)c ⊗ |ψ⟩t

with |ψ⟩ being the target state and the subscript c indicating the Entangling gates

controlled one. If we apply the Control-U gate we have

|QR⟩out = CU |QR⟩in =
1√
2

(
|0⟩ ⊗ |ψ⟩t + |1⟩c ⊗ Û |ψ⟩t

)
which is an entangled quantum register if ⟨ψ|Û|ψ⟩ ̸= 0.

C-NOT gates

Control-U gates with U being the NOT operation are said C-NOT
gates.

|Q⟩c
|Q⟩t

Figure 1.7: C-NOT gate

The action of the CNOT gate can be represented by the matrix

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


and it follows the action of the gate on the basis states (1.7)

CNOT |0⟩c ⊗ |0⟩t = |0⟩c ⊗ |0⟩t
CNOT |1⟩c ⊗ |0⟩t = |1⟩c ⊗ |1⟩t
CNOT |0⟩c ⊗ |1⟩t = |0⟩c ⊗ |1⟩t
CNOT |1⟩c ⊗ |1⟩t = |1⟩c ⊗ |0⟩t .

We see that the effect of the CNOT gate is flipping the second qubit
(the target qubit) if and only if the first qubit (the control qubit) is |1⟩.
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Universal quantum gates

We know that in classical computation a small set of gates (e.g. NOR
gates or alternatively NAND gates) can be used to compute an ar-
bitrary classical function, those gates are called universal gates, in
quantum computation

Definition 1.6. A set of gates is said to be universal for quantum com-
putation if any unitary operation may be approximated to arbitrary
accuracy by a quantum circuit involving only those gates.

Theorem 1.5. Single-qubit and CNOT gates can be used to implement
an arbitrary unitary operation on n qubits, and therefore are universal for
quantum computation [Mic11, p. 191].

1.3.4 Measurement

Theorem 1.6. Without loss of generality, any unterminated quantum wires
(qubits which are not measured) at the end of a quantum circuit may be
assumed to be measured [Mic11, p. 187].

|ψ⟩

Figure 1.8: Meter

We have discussed all postulates except postulate 3 which is the
root of this last element of the circuit. This postulate is intrinsically
probabilistic (as quantum mechanics is) and one could argue that the
implementation of deterministic algorithms in something probabilistic
is a contradiction in terms. That is not the case, let us start defining
the features of a quantum circuit in order to be able to execute an
algorithm:

• The input and output of the algorithm should be in a separable
state (i.e. not entangled).

• The gates of the circuit should not depend on the form of the
input, the algorithm has to be a universal process independent
of the input.

• The input and output of the algorithm should be written in
terms of the computational basis8 (the results of a measure are
the eigenvalues associated to their eigenstates, those eigenstates
represent the computational basis of the operator chosen).

• A type of measure of the observable associated with the operator
that defines the computational basis should be built.

8 If the input and/or the output is a quantum register the computational basis is a
tensor product like (1.4).
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Those conditions are enough for a quantum circuit to be consistent
that is with definite inputs and outputs and with an output that
guarantees a certain outcome once measured.

1.4 computational complexity

Let us define some notation.

Definition 1.7 (Big O notation). Let f be a real or complex valued
function and g a real valued function. Let both functions be defined
on some unbounded subset of positive real numbers. One writes

f (x) = O(g(x)) as x → a

if

lim
x→a

sup
| f (x)|
g(x)

< ∞.

Definition 1.8 (Big Ω Knuth notation). Let f be a real or complex
valued function and g a real valued function. Let both functions be
defined on some unbounded subset of positive real numbers. One
writes

f (x) = Ω(g(x))⇐⇒ g(x) = O( f (x)).

We take for granted some basic definitions of classical computational
complexity theory and we proceed defying

Definition 1.9. BPP is the class of languages that can be solved in
polynomial time by probabilistic Turing machines with error proba-
bility bounded by 1/3. Using standard boosting techniques the error
probability can then be made exponentially small in k by iterating the
algorithm k times.

Definition 1.10. PSPACE is the class of languages that may be solved
on a Turing machine using a polynomial number of working bits, with
no limitations on the amount of time that may be used by the machine.

Definition 1.11. BPQ is the class of languages that can be solved in
polynomial time by quantum Turing machines with error probability
bounded by 1/3. The error probability can be made exponentially
small as in BPP.

There are some evidence [Ben+97] that BQP ̸= BPP (i.e. polynomial-
time quantum Turing machines are more powerful than polynomial-
time probabilistic Turing machines). Since BPP is regarded as the class
of all efficiently computable languages, this provides evidence that
quantum computers could be inherently more powerful than classical
computers in a model-independent way.

However exactly where BQP fits with respect to P, NP and PSPACE
is as yet unknown. What is known is that quantum computers can
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solve all the problems in P efficiently and that there are no problems
outside of PSPACE which they can solve efficiently. Therefore, BQP
lies somewhere between P and PSPACE. It has been demonstrated
that

P ⊆ BPP ⊆ BQP ⊆ PSPACE

and so proving that BPP ⊂ BQP would definitively establish that
P ⊂ PSPACE, solving a major outstanding problem in computer
science.

Figure 1.9: The relationship between classical and quantum complexity
classes.

Another open computational problem is NP
?
⊆ BQP. We know that

we can adopt a quantum search algorithm to solve any NP-complete9

problem.
We can demonstrate that, because we know that the quantum search

algorithm is optimal, this means that it is not possible to search an
N item search space in O(log2 N). If such an algorithm had existed,
it would have allowed us to solve NP-complete problems efficiently

9 We can demonstrate that solving NP-complete problems in polynomial times would
mean solving every other NP problem in polynomial time.
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on a quantum computer by transforming problems in NP into search
problems. This strongly suggests that NP is not included in BQP.

This does not rule out the possibility that NP ⊂ BQP. What this
result do establish is that there is no search-based method for attacking
NP-complete problems. However we note that it is widely believed
that the search space of NP-complete problems has no structure and
that the best possible method for solving such problems is to adopt an
unstructured search method. Furthermore for many problems in the
NP-complete class there is no better method known than exhaustive
search of all the possible solution. If one takes this point of view this
indicates that BQP does not contain NP-complete problems.





2 Q U A N T U M S I M U L AT I O N

Can physics be simulated by a
universal computer? [...] the physical
world is quantum mechanical, and
therefore the proper problem is the
simulation of quantum physics [...]
the full description of quantum
mechanics for a large system with R
particles [...] has too many variables,
it cannot be simulated with a normal
computer with a number of elements
proportional to R [. . . but it can be
simulated with] quantum computer
elements. [...] Can a quantum system
be probabilistically simulated by a
classical (probabilistic, I’d assume)
universal computer? [...] If you take
the computer to be the classical kind
I’ve described so far [..] the answer is
certainly, No!

Richard P. Feynman (1982)

Quantum simulation is the area of quantum computation which
seems, at the time of writing, to provide the most useful and efficient
applications. In this chapter we are going to present the main and most
basic tools of quantum simulation, focusing on a specific techniques:
trotterization.

2.1 trotterization

Each physical system is described by its Hamiltonian. As discussed in
chapter 1 we know that the evolution of a quantum system is governed
by the Schrödinger equation [Sha11]:

i
d
dt
|ψ(t)⟩ = H |ψ(t)⟩ (2.9)

Our goal is to find the solution to this equation in a reasonable time
and with reasonable accuracy.

15
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Figure 2.1: Quantum simulation

When dealing with real particles in space this reduces to:1

i
∂

∂t
ψ(x) =

[
− 1

2m
∂2

∂x2 + V(x)
]

ψ(x) (2.10)

For one qubit evolving according to this equation a system of two
differential equations must be solved which results in 2n equations for
n qubits. This is incredibility hard to compute on a classical machine,
that is why quantum computers are so crucial in this field.

We know the solution of equation 2.9 for a time independent H:2

|ψ(t)⟩ = e−iHt |ψ(0)⟩ (2.11)

H is usually extremely difficult to exponentiate and in order to be
executed on a quantum computer the exponential should be rewritten
in terms of its native gates3.

But, what does it mean to take e to the power of an operator H?

1 What we are doing here is just rewriting the Hamiltonian H as the sum of kinetic
and potential energy, i.e. H = T + V and projecting the equation on the x basis,
using the conventional representation ⟨x|ψ⟩ = ψ(x). This results in V = V(x) and
T = − 1

2m
∂2

∂x2 . A complete explanation of the projection is outside the scope of this
work.

2 We are going to deal only and exclusively with time-independent Hamiltonians.
3 This is not entirely true, e−iHt should be rewritten in terms of quantum computation

gates, but as long as our machine has a set of universal quantum gates implemented
any quantum gate can be simulated, even if not native.
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Working with the the matrix representation of H, the time evolution
UH(t) = e−iHt can be numerically and algebraically evaluated using
a taylor series expansion (ex = 1 + x + x2/2! + x3/3! + ...) . This is
often where computers step in. Although, single Pauli operators (e.g.
H = σx) have a nice algebraic result. On a computer, many different
software packages have methods for computing eA where A is a matrix
(e.g. scipy or opflow).

We do need to be careful when the matrix that is being exponenti-
ated is a sum of operators that do not commute[Sha11]:

[A, B] = AB− BA ̸= 0 (2.12)

For example, if H = σx + σz, we need to take care in working with
eit(σx+σz) since the Pauli operatos σx and σz do not commute [σx, σz] =

σxσz − σzσx = −2iσy ̸= 0.
If we want to apply eit(σx+σz) on a quantum computer, however, we

will want to decompose the sum in the exponential into a product of
exponentials. Each product can then be implemented on the quantum
computer as a single or two-qubit gate.

Continuing the example, σx and σz do not commute ([σx, σz] ̸= 0),
so we cannot simply decompose the exponential into a product of
exponentials e−it(σx+σz) ̸= e−itσx e−itσz . This is where approximation
methods come in such as Trotterization (more on that in the next
section).

2.1.1 Time evolution

The problem of Hamiltonian simulation is thus stated as follows:
Given a Hamiltonian H and an evolution time t, output a sequence of
computational gates that implement

U = e−iHt (2.13)

.
This problem is meaningful because simulating the dynamics of

a quantum system is an essential problem in quantum physics and
quantum chemistry. As we have seen the Hamiltonian simulation
problem can be solved with an exponential number of gates on a
classical computer and now wee se that it requires only a polynomial
number on a quantum computer, which is a huge improvement.

2.1.2 Lie product formula

In order to decompose our time evolution operator U into a sequence
of gates, Lie product formula plays a crucial role.
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This is because in most physical systems, the Hamiltonian can be
written as a sum over many local interactions. Specifically, for a system
of n particles,

H =
L

∑
k=1

Hk, (2.14)

where each Hk acts on at most a constant c number of systems, and L
is a polynomial in n. [Sha11]

We can then rewrite the exponent of 2.13, which we want to decom-
pose as a sequence of one and two-qubit gates, and then apply:

Theorem 2.1. Let A and B be Hermitian operators. Then for any real t

lim
n→∞

(
eiAt/neiBt/n

)n
= ei(A+B)t (2.15)

[Mic11]

Note that this is true even if A and B do not commute.

Proof. By definition,

eiAt/n = I +
1
n

iAt + O
(

1
n2

)
and thus

eiAt/neiBt/n = I +
1
n

i(A + B)t + O
(

1
n2

)
Taking products of these gives us(

eiAt/neiBt/n
)n

= I +
n

∑
k=1

(
n
k

)
1
nk [i(A + B)t]k + O

(
1
n

)

and since
(

n
k

)
1
nk =

(
1 + O

( 1
n

))
/k!, this gives

lim
n→∞

(
eiAt/neiBt/n

)n
= lim

n→∞

n

∑
k=0

(i(A + B)t)k

k!

(
1 + O

(
1
n

))
+O

(
1
n

)
= ei(A+B)t

.

Since the limit of this formula is infinite, we have to truncate the
series when implementing this formula on a quantum computer. The
truncation introduces error in the simulation that we can bound by a
maximum simulation error ϵ. such that

||e−iHT −U|| ≤ ϵ

.
This truncation is known as Trotterization and it’s the core of the

simulation of non-commuting Hamiltonians on quantum computers.
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the algorithm Let us summarize the complete algorithm for quan-
tum simulation [Mic11]:

inputs The inputs of the quantum computer are:

1. A Hamiltonian H = ∑k Hk acting on an N-dimensional
system, where each Hk acts on a small subsystem of size
independent of N.

2. An initial state |ψ0⟩, of the system at t = 0.

3. A positive, non-zero accuracy δ.

4. A time t f at which the evolved state is desired.

outputs A state
∣∣ψ̃ (t f

)〉
such that

∣∣∣〈ψ̃
(
t f
) ∣∣∣e−iHt f

∣∣∣ψ0

〉∣∣∣2 ≥ 1− δ.

runtime O(poly(1/δ)) operations.

procedure Choose a representation such that the state |ψ̃⟩ of n =

poly(log N) qubits approximates the system and the operators
e−iHk∆t have efficient quantum circuit approximations. Select
an approximation method and ∆t such that the expected error
is acceptable (and j∆t = t f for an integer j ), construct the
corresponding quantum circuit U∆t for the iterative step, and do:

1. |ψ̃0⟩ ← |ψ0⟩ ; j = 0 initialize state

2. →
∣∣ψ̃j+1

〉
= U∆t

∣∣ψ̃j
〉

iterative update

3. → j = j + 1; goto 2 until j∆t ≥ t f loop

4. →
∣∣ψ̃ (t f

)〉
=
∣∣ψ̃j
〉

final result

2.2 state tomography

How we check if the result of our simulation is correct? State tomog-
raphy is a method for determining the quantum state of a qubit, or
qubits, even if the state is in a superposition or entangled. Repeatedly
measuring a prepared quantum state may not be enough to determine
the full state, in state tomography, a quantum circuit is repeated with
measurements done in different bases to exhaustively determine the
full quantum state (including any phase information). IBM is using
this technique to determine the full quantum state after the quantum
simulation. That state is then compared to the exact expected result to
compute a fidelity. Although this fidelity only gives information on
how well the quantum simulation produces one particular state, it’s a
more lightweight approach than a full process tomography calcula-
tion. In short, a high fidelity measured by state tomography doesn’t
guarente a high fidelity quantum simulation, but a low fidelity state
tomography does imply a low fidelity quantum simulation.
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In our problem the tomography is done on qubit 1,3,5 (more on
that in chapter 3). The result is a number between 0 and 1 with 1
meaning a perfect result. Error mitigation can be applied before the
state tomography according to the rules. [doc22a]

2.3 state of the art

Before introducing the state of the art let us discuss a bit the physical
realization of qubits.

2.3.1 Different qubit implementations

At the time of writing there are currently two technologies for imple-
menting qubits:

• Trapped ions.

• Superconducting circuit.

Let us focus on the type of qubit used in the machine we are going
to use:

superconducting qubits To create a solid-state qubit, like any
other kind of qubit, we need to isolate a two-level quantum system.
To date, efforts to make solid-state qubits have focused on super-
conductors and semiconductors. While interesting results have been
obtained with two semiconductor approaches, quantum dots and
single-donor systems, the superconducting approach is currently the
most advanced.

To maintain coherence it is essential to keep electron-electron inter-
actions, and also interactions between electrons and other degrees of
freedom (such as phonons in the solid), under control. Superconduc-
tors have the advantage in this regard because the electrons condense
into Cooper pairs that form a single superfluid. This superfluid is able
to move through the metal lattice without any resistance (i.e. without
interactions) because it takes a certain amount of energy, known as
the energy gap, to break up the Cooper pairs.

In aluminum, a popular material for making superconducting quan-
tum circuits, the energy gap corresponds to a frequency of 90 GHz at a
temperature of 20 mK. This gap is an order of magnitude greater than
the typical energy difference between the two levels in a superconduct-
ing qubit, which means that we can “drive” the qubit without breaking
up the Cooper pairs and jeopardizing the quantum coherence of the
system.

The behavior of the electron superfluid is completely determined by
a single quantum wavefunction. The amplitude of this wavefunction
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determines the number of Cooper pairs, while the value of the phase
is related to the supercurrent and any magnetic field that is present.
The amplitude and phase of the wavefunction are conjugate variables,
that is, they are related by an uncertainty principle that means we
cannot measure both of their values with arbitrary precision at the
same time.

The two primary types of superconducting qubit, the charge qubit
and the flux qubit, are directly related to these two variables: charge
qubits are associated with the amplitude, while flux qubits are related
to the phase. [Wor22]

State of the art

In figure 2.2 we report a summary of state-of-art experimental digital
quantum simulations from [Tac+19]. Open circles represent results ob-
tained on superconducting circuits quantum processors, while squares
correspond to experimental quantum simulations on trapped ions
processors. The color code corresponds to different target models
being simulated4: two-spin Transverse field Ising model (TIM2), two-
spin XY (XY2) and XYZ (XYZ2) models, 3- and 6-spin many body
interactions, two-spin Heisenberg model (Heis 2), and 2to 4 -mode
Fermi Hubbard model (FHx , with x = 2, 3, 4).

As we are going to see in chapter 3 Jakarta (the device used in
our experiments) is using superconducting Qubits, specifically the
Transmon. The description of the Transmon is way beyond the scope
of this work but you can find more info on that here [Qis22].

We are interested, as again we are going to see in chapter 3, to
two-spin Heisenberg model (Heis 2). That means that the state of the
art is around 0.7 in our case5.

It is very interesting to see that accuracy seems to decrease with
trotterization steps. Why? According to the formula of chapter 2 it
should be exactly the opposite! We are speculating here as there are
no known source proving this but our guess is that increasing the
number of trotterization steps increase the circuit and thus increase
noise in the simulation. This seems a reasonable explanation and it is
the reason why we will limit ourself in the number of steps.

4 They are simply different Hamiltonian: their description would be redundant and
it is purposely skipped, in chapter 3 we are going to describe our Hamiltonian of
interest.

5 Why? Again wait for chapter 3, the problem limit us to four steps of trotterization.
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Figure 2.2: State of the art



3 T H E C H A L L E N G E

Provando e riprovando.

Accademia del Cimento, Florence,
1675.

Here we start explaining the actual competition. First of all, what
we have to do it is simply simulate an Hamiltonian as explained in
chapter 2, nothing more. The Hamiltonian will be presented shortly
in 3.1. There are however some restriction:

1. Trotterization must be used in the decomposition and the num-
ber of steps should be greater or equal to four.

2. The simulation will be tested and executed on a specific device,
Jakarta, that we will describe in 3.3

Note that the access to the real device is tied to a long (very
long!) queue and time of execution itself is quite long too. That’s
why IBM provide backend simulators, i.e. classical computer that
simulates specifically quantum backends. Of course we will use
sim˙noisy˙jakarta = QasmSimulator.from˙backend(provider.get˙backend('ibmq˙jakarta'))

which is the simulator of Jakarta on a classical device. Of course sim-
ulations are not as near as precise as executions on the real device,
however they can guide you towards the right direction, saving execu-
tion on the real device for more fine-grained refinements.

There are even backends simulators without noise, however they
were not used as, after some testing, they seemed completely out of
touch with the results of the real device.

3.1 the xxx model

The quantum Heisenberg model, developed by Werner Heisenberg,
is a statistical mechanical model used in the study of critical points
and phase transitions of magnetic systems, in which the spins of the
magnetic systems are treated quantum mechanically. The model is
based on the Hamiltonian [Wik22]:

H = −1/2
N

∑
j=1

(Jxσ
j
xσ

j+1
x + Jyσ

j
yσ

j+1
y + Jzσ

j
zσ

j+1
z ) (3.16)

23
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where J is the coupling constant. We will use a simplified version.
This version of the general Heisenberg spin model is called XXX
because the same J value multiplies each pair of Pauli operators.

HHeis =
N

∑
⟨ij⟩

J
(

σ
(i)
x σ

(j)
x + σ

(i)
y σ

(j)
y + σ

(i)
z σ

(j)
z

)
. (3.17)

N is the number of spin-1/2 particles in model.The i and j super-
scripts label which qubit they act on. For example, σ

(1)
x would be

the σx operator acting on only qubit 1 (which is the 2nd qubit since
indexing starts at 0). The sum notation ⟨ij⟩ means the sum is over
nearest neighbors (only qubits next to each other interact), and J is the
interaction strength, which we will set J = 1.

Of course σx, σy, σz are the known pauli matrices:

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 −1

)
We will work with the explicit case of N = 3 with the 3 spins

arranged in a line. Written out fully, the Hamiltonian is

HHeis3 = σ
(0)
x σ

(1)
x + σ

(1)
x σ

(2)
x + σ

(0)
y σ

(1)
y

+ σ
(1)
y σ

(2)
y + σ

(0)
z σ

(1)
z + σ

(1)
z σ

(2)
z .

(3.18)

Now that we have a Hamiltonian (HHeis3), we can use it to determine
how the quantum system of 3 spin-1/2 particles changes in time.

To compute the matrix representation of HHeis3, we are actually
missing some pieces namely the identity operator I and the tensor
product ⊗ symbol. They are both often left out in when writing a
Hamiltonian, but they are implied to be there.

Writing out the full HHeis3 including the identity operators and
tensor product symbols we obtain:

HHeis3 = σ
(0)
x ⊗ σ

(1)
x ⊗ I(2) + I(0) ⊗ σ

(1)
x ⊗ σ

(2)
x

+ σ
(0)
y ⊗ σ

(1)
y ⊗ I(2) + I(0) ⊗ σ

(1)
y ⊗ σ

(2)
y

+ I(0) ⊗ σ
(0)
z ⊗ σ

(1)
z + I(0) ⊗ σ

(1)
z ⊗ σ

(2)
z .

(3.19)

Knowing the Hamiltonian, we can determine how quantum states
of that system evolve in time by solving the Schrödinger equations

ih̄
d
dt
|ψ(t)⟩ = H|ψ(t)⟩ (3.20)
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For simplicity, let’s set h̄ = 1. We know that the Hamiltonian Hheis3

does not change in time, so the solution to the Schrödinger equation
is an exponential of the Hamiltonian operator

UHeis3(t) = e−itHHeis3 = exp
(
−itHHeis3

)
(3.21)

UHeis3(t) = exp

−it
N=3

∑
⟨ij⟩

(
σ
(i)
x σ

(j)
x + σ

(i)
y σ

(j)
y + σ

(i)
z σ

(j)
z

) (3.22)

UHeis3(t) = exp
[
−it

(
σ
(0)
x σ

(1)
x + σ

(1)
x σ

(2)
x + σ

(0)
y σ

(1)
y + σ

(1)
y σ

(2)
y + σ

(0)
z σ

(1)
z + σ

(1)
z σ

(2)
z

)]
(3.23)

Now that we have the time evolution operator UHeis3(t), we can sim-
ulate changes in a state of the system (|ψ(t)⟩) over time |ψ(t)⟩ =
UHeis3(t)|ψ(t = 0)⟩.

Our goal will be to decompose UHeis3(t) into one and two-qubit
gates executable in the Jakarta device.

3.2 qiskit pulse and native gates

Something that we have still not explained is how to implement our
decomposition in the machine. First of all, our code is written in
Qiskit, a Python SDK, that we will describe better in appendix A.
However tha challenge give us two possibilities:

1. Using native gates.

2. Using Qiskit Pulse.

In the first case, we simply call the native gates with the predefined
commands1 and so we are forced to limit our decomposition to the
available gates.

Qiskit Pulse on the other ands offers low-level control of a device’s
qubits. Pulse allows users to program the physical interactions hap-
pening on the superconducting chip. This can be a powerful tool
for streamlining circuits, crafting new types of gates, getting higher
fidelity readout, and more.

We are going to use the first strategy, as it is the most straightforward
to implement for a single person working on the project.

3.3 jakarta

Jakarta is a 7-qubit machine, with a Falcon r5.11H processor.

1 Of course we can change parameters, phase and so on.
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Why 7 qubit is our Hamiltonian has only tree states? The other four
states can be used as ancilla qubits in the decomposition and/or to
reduce noise in noise reduction techniques. State Tomography at the
end will be done only on qubit 1,3,5 (and you can’t change which
qubits will me measured) while other qubits will not be measured and
so they are free to use as one like.

gates We can use the native gates of the machine, the following set
of gates are universal, therefore any gate can be implemented even
without Qiskit Pulse, however there could be a significant improve-
ment using only native gates2. Here is the list:

id: Identity

cnot: CNOT Gate

z: Z Gate

sx: Pauli-X Gate Squared

x: Pauli-X Gate

In figure 3.1 and figure 3.2 we see the full specifications of Jakarta.
Specifically in figure 3.2 we see the various errors in the native gates.
Note that those errors fluctuate quite significantly over time.

In figure 3.3, figure 3.4 and figure 3.5 we see the different errors in
the native gates divided per qubit.

Initially it was attempted to exploit those different errors in order
to create a decomposition that uses as less as possibile gates on qubit
with high errors on those gates. However, over time, this strategy has
not proved to be successful, especially for the already mentioned high
fluctuation of errors during time.

3.4 the solution

We want to decompose

UHeis3(t) = exp

−it
N=3

∑
⟨ij⟩

(
σ
(i)
x σ

(j)
x + σ

(i)
y σ

(j)
y + σ

(i)
z σ

(j)
z

) (3.24)

into single and two-qubit gates.
Since the Pauli operators do not commute with each other [Sha11]

the exponential UHeis3(t) cannot be split into a product of simpler
exponentials.

However, we can approximate UHeis3(t) as a product of simpler
exponentials through Trotterization. Consider a subsystem of 2 spin-
1/2 particles within the larger 3 spin system. The Hamiltonian on spins

2 e.g. avoiding overlapping of errors of the native gates
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Figure 3.1: The machine

Figure 3.2: Gates and errors
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Figure 3.3: CNOT errors

Figure 3.4: Single-qubit Pauli-X errors

Figure 3.5: Sx errors
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i and j (i, j ∈ {0, 1, 2}) would be H(i,j)
Heis2 = σ

(i)
x σ

(j)
x + σ

(i)
y σ

(j)
y + σ

(i)
z σ

(j)
z .

Rewriting UHeis3(t) in terms of the two possible subsystems within
the total N = 3 system you will simulate,

UHeis3(t) = exp
[
−it

(
H(0,1)

Heis2 + H(1,2)
Heis2

)]
. (3.25)

H(0,1)
Heis2 and H(1,2)

Heis2 do not commute, so

UHeis3(t) ̸= exp
(
−itH(0,1)

Heis2

)
exp

(
−itH(1,2)

Heis2

)
(3.26)

.
But, this product decomposition can be approximated with Trot-

terization which says UHeis3(t) is approximately a short evolution of
H(0,1)

Heis2 (time = t/n) and followed by a short evolution of H(1,2)
Heis2 (time

= t/n) repeated n times

UHeis3(t) = exp
[
−it

(
H(0,1)

Heis2 + H(1,2)
Heis2

)]
(3.27)

UHeis3(t) ≈
[

exp
(
−it
n

H(0,1)
Heis2

)
exp

(
−it
n

H(1,2)
Heis2

)]n

. (3.28)

n is the number of Trotter steps, and as n increases, the approxima-
tion should becomes more accurate but as we have already anticipated
experimentally this not seems to be the case.

But now we have a state of the art solution for decomposing Heis2
into quantum gates [VD04] [Chi+19] and this is shown in figure 3.6,
we can then implement this decomposition of Heis2 into our decom-
position of Heis3.

In the decomposition of Heis2 we have:

RX(θ) = exp
(
−i

θ

2
X
)
=

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
(3.29)

and

RZ(λ) = exp
(
−i

λ

2
Z
)
=

(
e−i λ

2 0
0 ei λ

2

)
. (3.30)

Those are not native gates but as already said they can be imple-
mented as Jakarta has a universal set of quantum gates, and we can
change the phase factor directly without the need of using Pulse.

At the end our circuit is represented in figure 3.7 where we can see
the 7 qubits, the 4 trotterization steps and the measure at the end. The
circuit of 3.6 is contained in each trotterization step.

Finally, those are the results:

noisy simulation: 0.4405 ± 0.0011 (N=4)

real device: 0.3108 ± 0.0034 (N=4)
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Figure 3.6: Heis2 decomposition

Figure 3.7: Circuit overview

You may ask why there were not tried more complicated decomposi-
tion, the reason is that at the end reducing the original Hamiltonian to
Hamiltonians with already recognized state of the art decomposition
resulted to be the strategy that provided the better results, as com-
pletely raw decomposition directly to gates resulted in significantly
weaker results.

In addition to that the least number of trotterization steps as the
problem required were used. This is because, contrary to what Lie’s
formula presented in chapter 2 seems to suggests, experimentally
it was very clear that augmenting trotterization steps significantly
reduced state tomography results, probably because no noise suppres-
sion techniques were used in order to deal with the the fact that the
circuit increases with more Trotterization steps.
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Here we report the code, written in Qiskit and executed on the device.
But what is Qiskit? Qiskit is an open-source software development

kit (SDK) for working with quantum computers at the level of circuits,
pulses, and algorithms. It provides tools for creating and manipulating
quantum programs and running them on prototype quantum devices
on IBM Quantum Experience or on simulators on a local computer.

It follows the circuit model for universal quantum computation, and
can be used for any quantum hardware (currently supports supercon-
ducting qubits and trapped ions) that follows this model.

Note that even if this SDK is developed and maintained by IBM it
is fully Open Source and can be used to work in systems that are not
IBM’s (if they implement support to the language).

1 import numpy as np

2 import matplotlib.pyplot as plt

3 plt.rcParams.update(–'font.size': 16˝) # enlarge matplotlib fonts

4

5 # Import qubit states Zero (—0¿) and One (—1¿), and Pauli

operators (X, Y, Z)↪→

6 from qiskit.opflow import Zero, One, I, X, Y, Z

7

8 # Suppress warnings

9 import warnings

10 warnings.filterwarnings('ignore')

11

12 def H˙heis3():

13 # Interactions (I is the identity matrix; X, Y, and Z are Pauli

matricies; ˆ is a tensor product)↪→

14 XXs = (IˆXˆX) + (XˆXˆI)

15 YYs = (IˆYˆY) + (YˆYˆI)

16 ZZs = (IˆZˆZ) + (ZˆZˆI)

17

18 # Sum interactions

19 H = XXs + YYs + ZZs

20

21 # Return Hamiltonian

22 return H

23

24 # Returns the matrix representation of U˙heis3(t) for a given time

t assuming an XXX Heisenberg Hamiltonian for 3 spins-1/2

particles in a line

↪→

↪→

31
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25 def U˙heis3(t):

26 # Compute XXX Hamiltonian for 3 spins in a line

27 H = H˙heis3()

28

29 # Return the exponential of -i multipled by time t multipled by

the 3 spin XXX Heisenberg Hamilonian↪→

30 return (t * H).exp˙i()

31

32 # Define array of time points

33 ts = np.linspace(0, np.pi, 100)

34

35 # Define initial state —110¿

36 initial˙state = OneˆOneˆZero

37

38 # Compute probability of remaining in —110¿ state over the array of

time points↪→

39 # ˜initial˙state gives the bra of the initial state (¡110—)

40 # @ is short hand for matrix multiplication

41 # U˙heis3(t) is the unitary time evolution at time t

42 # t needs to be wrapped with float(t) to avoid a bug

43 # (...).eval() returns the inner product ¡110—U˙heis3(t)—110¿

44 # np.abs(...)**2 is the modulus squared of the innner product which

is the expectation value, or probability, of remaining in —110¿↪→

45 probs˙110 = [np.abs((˜initial˙state @ U˙heis3(float(t)) @

initial˙state).eval())**2 for t in ts]↪→

46

47 # Plot evolution of —110¿

48 plt.plot(ts, probs˙110)

49 plt.xlabel('time')

50 plt.ylabel(r'probability of state $—110“rangle$')

51 plt.title(r'Evolution of state $—110“rangle$ under $H˙–Heis3˝$')

52 plt.grid()

53 plt.show()

54

55 # Importing standard Qiskit modules

56 from qiskit import QuantumCircuit, QuantumRegister, IBMQ,

execute, transpile↪→

57 from qiskit.providers.aer import QasmSimulator

58 from qiskit.tools.monitor import job˙monitor

59 from qiskit.circuit import Parameter

60

61 # Import state tomography modules

62 from qiskit.ignis.verification.tomography import

state˙tomography˙circuits, StateTomographyFitter↪→

63 from qiskit.quantum˙info import state˙fidelity

64
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65 # suppress warnings

66 import warnings

67 warnings.filterwarnings('ignore')

68

69 # load IBMQ Account data

70

71 IBMQ.save˙account(TOKEN) # replace TOKEN with your API

token string (https://quantum-

computing.ibm.com/lab/docs/iql/manage/account/ibmq)

↪→

↪→

72 provider = IBMQ.load˙account()

73

74 from qiskit.providers.aer import AerSimulator# Get backend for

experiment↪→

75 provider = IBMQ.get˙provider(hub='ibm-q-community',

group='ibmquantumawards', project='open-science-22')↪→

76 jakarta = provider.get˙backend('ibmq˙jakarta')

77 properties = jakarta.properties()

78 # Simulated backend based on ibmq˙jakarta's device noise profile

79 sim˙noisy˙jakarta = QasmSimula-

tor.from˙backend(provider.get˙backend('ibmq˙jakarta'))↪→

80

81 # Noiseless simulated backend

82 sim = QasmSimulator()

83

84 t = Parameter('t')

85

86 Solution˙qr = QuantumRegister(2)

87 Solution˙qc = QuantumCircuit(Solution˙qr, name='3-CNOT')

88

89 Solution˙qc.cnot(0,1)

90 Solution˙qc.rx(2*t - np.pi/2,0)

91 Solution˙qc.rz(2*t,1)

92 Solution˙qc.h(0)

93 Solution˙qc.cnot(0,1)

94 Solution˙qc.h(0)

95 Solution˙qc.rz(2*t, 1).inverse()

96 Solution˙qc.cnot(0,1)

97 Solution˙qc.rx(np.pi/2, 0)

98 Solution˙qc.rx(np.pi/2, 1).inverse()

99

100 Solution = Solution˙qc.to˙instruction()

101

102 # Combine subcircuits into a single multiqubit gate representing a

single trotter step↪→

103 num˙qubits = 3

104
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105 Trot˙qr = QuantumRegister(num˙qubits)

106 Trot˙qc = QuantumCircuit(Trot˙qr, name='Trot')

107

108 for i in range(0, num˙qubits - 1):

109 Trot˙qc.append(Solution, [Trot˙qr[i], Trot˙qr[i+1]])

110

111 # Convert custom quantum circuit into a gate

112 Trot˙gate = Trot˙qc.to˙instruction()

113

114 # The final time of the state evolution

115 target˙time = np.pi

116

117 # Number of trotter steps

118 trotter˙steps = 4 ### CAN BE ¿= 4

119

120 # Initialize quantum circuit for 3 qubits

121 qr = QuantumRegister(7)

122 qc = QuantumCircuit(qr)

123

124 # Prepare initial state (remember we are only evolving 3 of the 7

qubits on jakarta qubits (q˙5, q˙3, q˙1) corresponding to the state

—110¿)

↪→

↪→

125 qc.x([3,5]) # DO NOT MODIFY (—q˙5,q˙3,q˙1¿ = —110¿)

126

127 # Simulate time evolution under H˙heis3 Hamiltonian

128 for ˙ in range(trotter˙steps):

129 qc.append(Trot˙gate, [qr[1], qr[3], qr[5]])

130

131 # Evaluate simulation at target˙time (t=pi) meaning each trotter

step evolves pi/trotter˙steps in time↪→

132 qc = qc.bind˙parameters(–t: target˙time/trotter˙steps˝)

133

134 # Generate state tomography circuits to evaluate fidelity of

simulation↪→

135 st˙qcs = state˙tomography˙circuits(qc, [qr[1], qr[3], qr[5]])

136

137 # Display circuit for confirmation

138 #st˙qcs[-1].decompose().decompose().draw('latex') # view

decomposition of trotter gates↪→

139 st˙qcs[-1].draw('mpl') # only view trotter gates

140

141 shots = 8192

142 reps = 8

143 backend = sim˙noisy˙jakarta

144 config = backend.configuration()

145 # reps = 8
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146 # backend = jakarta

147

148 jobs = []

149 for ˙ in range(reps):

150 # execute

151 job = execute(st˙qcs, backend, shots=shots)

152 print('Job ID', job.job˙id())

153 jobs.append(job)

154

155 print(”This backend is called –0˝, and is on version –1˝. It has –2˝

qubit–3˝. It ”↪→

156 ”–4˝ OpenPulse programs. The basis gates supported on this

device are –5˝.”↪→

157 ””.format(config.backend˙name,

158 config.backend˙version,

159 config.n˙qubits,

160 '' if config.n˙qubits == 1 else 's',

161 'supports' if config.open˙pulse else 'does not support',

162 config.basis˙gates))

163

164 for job in jobs:

165 job˙monitor(job)

166 try:

167 if job.error˙message() is not None:

168 print(job.error˙message())

169 except:

170 pass

171

172 # Compute the state tomography based on the st˙qcs quantum

circuits and the results from those ciricuits↪→

173 def state˙tomo(result, st˙qcs):

174 # The expected final state; necessary to determine state

tomography fidelity↪→

175 target˙state = (OneˆOneˆZero).to˙matrix() # DO NOT MODIFY

(—q˙5,q˙3,q˙1¿ = —110¿)↪→

176 # Fit state tomography results

177 tomo˙fitter = StateTomographyFitter(result, st˙qcs)

178 rho˙fit = tomo˙fitter.fit(method='lstsq')

179 # Compute fidelity

180 fid = state˙fidelity(rho˙fit, target˙state)

181 return fid

182

183 # Compute tomography fidelities for each repetition

184 fids = []

185 for job in jobs:

186 fid = state˙tomo(job.result(), st˙qcs)
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187 fids.append(fid)

188

189 print('state tomography fidelity = –:.4f˝ “u00B1

–:.4f˝'.format(np.mean(fids), np.std(fids)))↪→



C O N C L U S I O N S

This was an attempt to summarize as much as possible a short intro-
duction to the field of quantum computation, an overview to the actual
state of the art, at the time of writing, of quantum simulation and at
the end the explanation of the solution provided for the competition.

Long story short, results are not extremely exciting and/or revolu-
tionary. Many aspects of this solution could be improved:

noise suppression: a main point which was missed mostly due to
time limitation and lack of knowledge in this specific area. Even
if noise suppression it is not and it can’t be a valid replacement
of a good decomposition of the time operator, it can definitely
help.

errors in different gates: exploiting the different errors in the
gates in the decomposition was another big miss, but everything
tried did not seems to give an improvement.

more advanced decompositions: exploiting specific decomposi-
tion tied to the tipe of qubit used in Jakarta it is also something
worth exploiting, even if it does not seems to be too much litera-
ture about the subject.

ancilla qubits: ancilla qubits were not exploited, which lead to 3
qubit being de facto not used during all the computation, the
involvement of those qubits could have played a major role,
especially in noise suppression.

more experiments: a huge drawback was played by the long
queue in accessing the device, resulting in a limited tuning
of the parameters based on experimental results, this variable
was obviously not under our control.

However, based on the various experiments, we are able to conclude
the following:

we are still far from a logical qubit: a logical qubit is an ab-
stract qubit that performs as specified in a quantum algorithm
and has a long enough coherence time to be usable by quantum
logic gates. At the time of writing, we are still dealing with a
physical qubit, i.e. a device that behaves as a two-state quantum
system, but that carry with itself all the limitations of its imple-
mentation. That means that when implementing an algorithm,
unlike classical computation, we are not only dealing with the

37
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algorithm itself, but mostly with the hardware (i.e. the physical
qubits) used to implement it. Error-correction is essential, and
very low level control of the hardware is needed to produce
something useful. Different implementations of the physical
qubit play a crucial role in how a specific algorithm or a specific
decomposition will perform, something which is not present in
classical computation.

simulators are almost useless: the amount of randomness in
the simulator of quantum backends on classical computer was
astonishing, but it does make sense connecting experience with
theory. Quantum computers are inherently more powerful for
certain operations and simulating them in an accurate way is
not possible. This however was and still is a big limitation, as
access to new and reliable hardware is a bit of a challenge itself.

entanglement plays a crucial role: all the power of the state
of the art decomposition of HHeis2 comes from entanglement.
Citing [Mic11] ’entanglement is iron to the classical world’s
bronze age’. However, there is as yet no complete theory of
it and it is not always clear how it can be used. Being able
to exploit it in a decomposition however seems to drastically
overcome any other type of decomposition.

machine learning does not seem a good fit: we tried (mostly
adapted solutions found online) a machine learning approach
to the decomposition, paired with a noisy simulator, but they
didn’t seem to work, at all. It could have been a fault of imple-
mentation, however this seems one of those few cases where pen
and paper outperform brute force techniques.

single measurements are not enough: unless very rare cases,
it is necessary to run the algorithm several times in order to
produce a sample with statistical significance to work on, as a
single measurement is not enough to establish the exact result,
giving the large delta caused by the noise. This could of course
be improved with error-correction techniques, but rarely to the
point when a single execution is enough.

In the end, quantum computation and quantum simulation is an
exciting field which is evolving rapidly and it is definitely very promis-
ing. This was a first and a small attempt to familiarize with it in a
real-world scenario and with an open challenge. Even if results are
not even near to the actual state of the art, the amount of knowledge
acquired during this long journey was definitely worth the effort.
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